Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data.

نویسندگان

  • D Stow
  • A Lopez
  • C Lippitt
  • S Hinton
  • J Weeks
چکیده

A segmentation and hierarchical classification approach applied to QuickBird multispectral satellite data was implemented, with the goal of delineating residential land use polygons and identifying low and high socio-economic status of neighbourhoods within Accra, Ghana. Two types of object-based classification strategies were tested, one based on spatial frequency characteristics of multispectral data, and the other based on proportions of Vegetation-Impervious-Soil sub-objects. Both approaches yielded residential land-use maps with similar overall percentage accuracy (75%) and kappa index of agreement (0.62) values, based on test objects from visual interpretation of QuickBird panchromatic imagery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparis...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Frequency distribution signatures and classification of within-object pixels

The premise of geographic object-based image analysis (GEOBIA) is that image objects are composed of aggregates of pixels that correspond to earth surface features of interest. Most commonly, image-derived objects (segments) or objects associated with predefined land units (e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and standard deviation)...

متن کامل

Assessing the Utility of Satellite Imagery with Differing Spatial Resolutions for Deriving Proxy Measures of Slum Presence in Accra, Ghana.

Little research has been conducted on how differing spatial resolutions or classification techniques affect image-driven identification and categorization of slum neighborhoods in developing nations. This study assesses the correlation between satellite-derived land cover and census-derived socioeconomic variables in Accra, Ghana to determine whether the relationship between these variables is ...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of remote sensing

دوره 28 22  شماره 

صفحات  -

تاریخ انتشار 2007